CF715B Complete The Graph 题解

Description

nnmm 边的无向图,LLsstt

修改 mm 条边中边为 00 的边,使满足 s,ts,t 的最短路长度是 LL,且输出答案的时候边为 00 的边的权值必须在 [1,1018][1,10^{18}] 内。

Solution

考虑怎么判有无解。

容易发现将所有未知边边权设为 101810^{18},如果最短路小于 LL,或者未知边设为 11 后最短路大于 LL 时无解,否则有解。因为每次只将一条边的长度加 11 后最短路至多增加 11

不妨设 disidis_i 表示 ii 在未知边边权为 11 时与 ss 的距离,detdet 表示 LdistL-dis_t。容易发现我们的任务就是让 distdis_t 增加 detdet

考虑再进行一次 dijkstra,如果当前松弛的边 (u,v,w)(u,v,w) 满足 disv+det>disu+wdis_{v}+det>dis^{'}_{u}+w 且这条边未确定,就将 ww 调整为 disv+detdisudis_{v}+det-dis^{'}_u,这样的话每个点的最短路一定不会增加超过 detdet,且 distdis_t 一定能增加 detdet

时间复杂度:O((n+m)logn)O((n+m)\log n)

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#include <bits/stdc++.h>

#define int int64_t

const int kMaxN = 1e3 + 5, kMaxM = 1e4 + 5;

int n, m, L, s, t, det;
int u[kMaxM], v[kMaxM], w[kMaxM];
int dis1[kMaxN], dis2[kMaxN];
bool del[kMaxM];
std::vector<std::tuple<int, int, int>> G[kMaxN];

int dijkstra1(int *dis) {
static bool vis[kMaxN];
for (int i = 1; i <= n; ++i) G[i].clear();
for (int i = 1; i <= m; ++i) {
if (w[i]) {
G[u[i]].emplace_back(v[i], w[i], i), G[v[i]].emplace_back(u[i], w[i], i);
}
}
for (int i = 1; i <= n; ++i) {
dis[i] = 1e18, vis[i] = 0;
}
std::priority_queue<std::pair<int, int>> q;
q.emplace(0, s), dis[s] = 0;
for (; !q.empty();) {
int u = q.top().second; q.pop();
if (vis[u]) continue;
vis[u] = 1;
for (auto [v, w, id] : G[u]) {
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
q.emplace(-dis[v], v);
}
}
}
return dis[t];
}

int dijkstra2(int *dis) {
static bool vis[kMaxN];
for (int i = 1; i <= n; ++i) G[i].clear();
for (int i = 1; i <= m; ++i) {
if (w[i]) {
G[u[i]].emplace_back(v[i], w[i], i), G[v[i]].emplace_back(u[i], w[i], i);
}
}
for (int i = 1; i <= n; ++i) {
dis[i] = 1e18, vis[i] = 0;
}
std::priority_queue<std::pair<int, int>> q;
q.emplace(0, s), dis[s] = 0;
for (; !q.empty();) {
int u = q.top().second; q.pop();
if (vis[u]) continue;
vis[u] = 1;
for (auto [v, w, id] : G[u]) {
if (del[id] && dis1[v] + det > dis[u] + ::w[id])
::w[id] = dis1[v] + det - dis[u];
if (dis[v] > dis[u] + ::w[id]) {
dis[v] = dis[u] + ::w[id];
q.emplace(-dis[v], v);
}
}
}
return dis[t];
}

void print() {
std::cout << "YES\n";
for (int i = 1; i <= m; ++i)
std::cout << u[i] - 1 << ' ' << v[i] - 1 << ' ' << w[i] << '\n';
}

void dickdreamer() {
std::cin >> n >> m >> L >> s >> t;
++s, ++t;
for (int i = 1; i <= m; ++i) {
std::cin >> u[i] >> v[i] >> w[i];
++u[i], ++v[i];
if (!w[i]) del[i] = 1, w[i] = 1e18;
}
int dis = dijkstra1(dis1);
if (dis < L) return void(std::cout << "NO\n");
if (dis == L) return print();
for (int i = 1; i <= m; ++i)
if (del[i])
w[i] = 1;
int now = dijkstra1(dis1);
if (now > L) return void(std::cout << "NO\n");
det = L - now;
dijkstra2(dis2);
print();
}

int32_t main() {
#ifdef ORZXKR
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0);
int T = 1;
// std::cin >> T;
while (T--) dickdreamer();
// std::cerr << 1.0 * clock() / CLOCKS_PER_SEC << "s\n";
return 0;
}

CF715B Complete The Graph 题解
https://sobaliuziao.github.io/2024/11/18/post/ef5ac347.html
作者
Egg_laying_master
发布于
2024年11月18日
许可协议