CF571E Geometric Progressions 题解

Description

  • 给定 nn 以及 nn 个正整数对 ai,bia_i, b_i
  • iiai,bia_i, b_i 确定了一个序列 {ai,aibi,aibi2,aibi3,}\{a_i, a_i b_i, a_i b_i^2, a_i b_i^3, \ldots \}
  • 询问最小的在 nn 个序列中都有出现的数,或者判断不存在。
  • n100n \le 100ai,bi109a_i, b_i \le {10}^9,答案对 109+7{10}^9 + 7 取模。

Solution

设答案为 kk,注意到答案很大,考虑分解质因数,设 cntp(x)cnt_p(x) 表示 xx 的质因数分解有多少个 pp,每次合并两个集合。

合并时有 33 种情况:空集、只有一个数的集合、有无穷个数的集合。

考虑如何合并。设最终的数可以表示为 aibikia_ib_i^{k_i},那么一定满足 cntp(ai)+kicntp(bi)=cntp(aj)+kjcntp(bj)cnt_p(a_i)+k_icnt_p(b_i)=cnt_p(a_j)+k_jcnt_p(b_j)。对于所有 pp,如果 cntp(bi)cnt_p(b_i)cntp(bj)cnt_p(b_j) 都为 00,就只用判断 cntp(ai)cnt_p(a_i) 是否等于 cntp(aj)cnt_p(a_j)

如果 cntp(bi)cnt_p(b_i)cntp(bj)cnt_p(b_j) 只有一个 00,那么就可以唯一确定 kk 了,求出来然后判断即可。

如果都不是 00,那么一定为关于 kik_ikjk_j 的不定方程,如果有 2\geq 2 种不同的方程就能唯一确定 kk。否则就可以通过 exgcd 把 (ai,bi)(a_i,b_i)(aj,bj)(a_j,b_j) 合并,设 xxkik_i 的最小正整数解,结果就为 (aibix,plcm{cntp(bi),cntp(bj)})\left(a_ib_i^x,\prod p^{\text{lcm}{\left\{cnt_p(b_i),cnt_p(b_j)\right\}}}\right)

这里由于 cntp(bi)30cnt_p(b_i)\leq 30,所以所有 cntcnt 的 lcm 不会爆 long long,对于乘法用 int128 即可。

时间复杂度:还不会算。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#include <bits/stdc++.h>

#define int int64_t

using i128 = __int128_t;
using pii = std::pair<int, int>;

const int kMaxN = 105, kMod = 1e9 + 7;

int n;
int a[kMaxN], b[kMaxN];
std::vector<int> pri, va[kMaxN], vb[kMaxN];

constexpr int qpow(int bs, int64_t idx = kMod - 2) {
int ret = 1;
for (; idx; idx >>= 1, bs = (int64_t)bs * bs % kMod)
if (idx & 1)
ret = (int64_t)ret * bs % kMod;
return ret;
}

inline int add(int x, int y) { return (x + y >= kMod ? x + y - kMod : x + y); }
inline int sub(int x, int y) { return (x >= y ? x - y : x - y + kMod); }
inline void inc(int &x, int y) { (x += y) >= kMod ? x -= kMod : x; }
inline void dec(int &x, int y) { (x -= y) < 0 ? x += kMod : x; }

bool isprime(int x) {
for (int i = 2; i * i <= x; ++i)
if (x % i == 0)
return 0;
return 1;
}

i128 exgcd(i128 a, i128 b, i128 &x, i128 &y) {
if (!b) { x = 1, y = 0; return a; }
i128 d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}

pii merge(std::pair<i128, i128> a, std::pair<i128, i128> b) {
if (!~a.second || !~b.second) return {0, -1};
if (a == b) return a;
if (!~a.first) return b;
if (!~b.first) return a;
if (a.second > b.second) std::swap(a, b);
if (!a.second && !b.second) {
if (a.first == b.first) return {0, -1};
else return a;
} else if (!a.second) {
if (a.first >= b.first && (a.first - b.first) % b.second == 0) return a;
else return {0, -1};
}
i128 x, y;
// a.second * x + a.first = b.second * y + b.first
// a.second * x - b.second * y = b.first - a.first
i128 d = exgcd(a.second, b.second, x, y);
if ((a.first - b.first) % d != 0) return {0, -1};
y = -y;
// a.second * x - b.second * y = d
x *= (b.first - a.first) / d, y *= (b.first - a.first) / d;
// a.second * x - b.second * y = b.first - a.first
a.second /= d, b.second /= d;
int tmp = (b.first - a.first) / d;
// a.second * x - b.second * y = tmp
assert(a.second * x - b.second * y == tmp);
assert((a.second * x * d + a.first - b.first) % (b.second * d) == 0);
x = (x % b.second + b.second) % b.second;
if (a.second * x - tmp < 0) {
int to = (tmp + a.second - 1) / a.second;
assert(x < to);
int det = (to - x + b.second - 1) / b.second;
x += det * b.second;
}
int val = a.second * x * d + a.first, lcm = a.second * b.second * d;
// std::cerr << "heige " << a.first << ' ' << a.second * d << ' ' << b.first << ' ' << b.second * d << ' ' << val << ' ' << lcm << '\n';
assert((val - b.first) % (b.second * d) == 0);
return {val, lcm};
}

std::vector<int> getp(int x) {
std::vector<int> vec;
for (int i = 2; i * i <= x; ++i) {
if (x % i == 0) {
vec.emplace_back(i);
for (; x % i == 0; x /= i) {}
}
}
if (x > 1) vec.emplace_back(x);
return vec;
}

int getcnt(int a, int p) {
int cnt = 0;
for (; a % p == 0; a /= p) ++cnt;
return cnt;
}

int getval(std::vector<int> v) {
int ret = 1;
for (int i = 0; i < (int)v.size(); ++i)
ret = 1ll * ret * qpow(pri[i], v[i]) % kMod;
return ret;
}

bool check(std::vector<int> v) {
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < (int)pri.size(); ++j) {
if (v[j] < va[i][j]) return 0;
if (!vb[i][j] && v[j] != va[i][j] || vb[i][j] && (v[j] - va[i][j]) % vb[i][j] != 0) return 0;
}
}
return 1;
}

bool equal(std::tuple<int, int, int> a, std::tuple<int, int, int> b) {
return ((i128)std::get<0>(a) * std::get<1>(b) == (i128)std::get<1>(a) * std::get<0>(b))
&& ((i128)std::get<1>(a) * std::get<2>(b) == (i128)std::get<2>(a) * std::get<1>(b));
}

std::pair<int, int> calc(std::tuple<i128, i128, i128> a, std::tuple<i128, i128, i128> b) {
auto [a1, a2, a3] = a;
auto [b1, b2, b3] = b;
i128 kk = a2 * b1 - a1 * b2, vv = a3 * b1 - b3 * a1;
if (!kk) return {-1, -1};
if (kk && (vv / kk) * kk != vv) return {-1, -1};
i128 y = vv / kk;
if (y < 0) return {-1, -1};
kk = a1, vv = a3 - a2 * y;
if (!kk) kk = b1, vv = b3 - b2 * y;
if (!kk && vv || kk && (vv / kk) * kk != vv) return {-1, -1};
i128 x = vv / kk;
assert(a1 * x + a2 * y == a3 && b1 * x + b2 * y == b3);
if (x < 0 || y < 0) return {-1, -1};
else return {x, y};
}

void dickdreamer() {
std::cin >> n;
for (int i = 1; i <= n; ++i) {
std::cin >> a[i] >> b[i];
auto tmp1 = getp(a[i]), tmp2 = getp(b[i]);
for (auto x : tmp1) pri.emplace_back(x);
for (auto x : tmp2) pri.emplace_back(x);
}
std::sort(pri.begin(), pri.end()), pri.erase(std::unique(pri.begin(), pri.end()), pri.end());
for (int i = 1; i <= n; ++i) {
va[i].resize(pri.size()), vb[i].resize(pri.size());
for (int j = 0; j < (int)pri.size(); ++j) {
va[i][j] = getcnt(a[i], pri[j]);
vb[i][j] = getcnt(b[i], pri[j]);
}
}
for (int i = 1; i < n; ++i) {
bool fl = 0;
std::tuple<int, int, int> now = {-1, -1, -1};
for (int j = 0; j < (int)pri.size(); ++j) {
int x = vb[i][j], y = -vb[i + 1][j], z = va[i + 1][j] - va[i][j];
if (!x && !y) {
if (z) return void(std::cout << "-1\n");
} else if (!x) {
int tmp = z / y;
if (tmp * y != z || tmp < 0) return void(std::cout << "-1\n");
std::vector<int> vec(pri.size());
for (int k = 0; k < (int)pri.size(); ++k)
vec[k] = va[i + 1][k] + vb[i + 1][k] * tmp;
if (check(vec)) return void(std::cout << getval(vec) << '\n');
} else if (!y) {
int tmp = z / x;
if (tmp * x != z || tmp < 0) return void(std::cout << "-1\n");
std::vector<int> vec(pri.size());
for (int k = 0; k < (int)pri.size(); ++k)
vec[k] = va[i][k] + vb[i][k] * tmp;
if (check(vec)) return void(std::cout << getval(vec) << '\n');
}
if (!fl) fl = 1, now = {x, y, z};
else {
if (!equal(now, {x, y, z})) {
auto p = calc(now, {x, y, z});
if (!~p.first && !~p.second) return void(std::cout << "-1\n");
else {
std::vector<int> vec(pri.size());
for (int k = 0; k < (int)pri.size(); ++k) {
vec[k] = va[i][k] + vb[i][k] * p.first;
}
if (check(vec)) return void(std::cout << getval(vec) << '\n');
else return void(std::cout << "-1\n");
}
}
}
}
for (int j = 0; j < (int)pri.size(); ++j) {
auto p = merge({va[i][j], vb[i][j]}, {va[i + 1][j], vb[i + 1][j]});
if (!~p.second) return void(std::cout << "-1\n");
va[i + 1][j] = p.first, vb[i + 1][j] = p.second;
}
}
std::cout << getval(va[n]) << '\n';
}

int32_t main() {
#ifdef ORZXKR
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0);
int T = 1;
// std::cin >> T;
while (T--) dickdreamer();
// std::cerr << 1.0 * clock() / CLOCKS_PER_SEC << "s\n";
return 0;
}

CF571E Geometric Progressions 题解
https://sobaliuziao.github.io/2024/08/06/post/431929ff.html
作者
Egg_laying_master
发布于
2024年8月6日
许可协议