1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
| #include <bits/stdc++.h>
const int kMaxN = 105, kMod = 1e9 + 9;
int n, m, rt; int f[kMaxN][kMaxN], g[kMaxN], tmp[kMaxN], ans[kMaxN], sz[kMaxN], C[kMaxN][kMaxN]; bool vis[kMaxN], del[kMaxN], exi[kMaxN]; std::vector<int> G[kMaxN], vec;
constexpr int qpow(int bs, int64_t idx = kMod - 2) { int ret = 1; for (; idx; idx >>= 1, bs = (int64_t)bs * bs % kMod) if (idx & 1) ret = (int64_t)ret * bs % kMod; return ret; }
inline int add(int x, int y) { return (x + y >= kMod ? x + y - kMod : x + y); } inline int sub(int x, int y) { return (x >= y ? x - y : x - y + kMod); } inline void inc(int &x, int y) { (x += y) >= kMod ? x -= kMod : x; } inline void dec(int &x, int y) { (x -= y) < 0 ? x += kMod : x; }
void prework() { C[0][0] = 1; for (int i = 1; i <= n; ++i) { C[i][0] = 1; for (int j = 1; j <= i; ++j) C[i][j] = add(C[i - 1][j], C[i - 1][j - 1]); } }
void _dfs(int u, int fa, int rt) { vis[u] = 1; for (auto v : G[u]) { if (v == fa) continue; if (!vis[v]) _dfs(v, u, rt); else del[rt] |= (v == rt); } }
void check(int x) { std::fill_n(vis + 1, n, 0); _dfs(x, 0, x); exi[x] = del[x]; }
void dfs1(int u, int fa) { vec.emplace_back(u); exi[u] = 1; bool fl = 0; for (auto v : G[u]) { fl |= del[v]; if (v == fa || exi[v]) continue; dfs1(v, u); } if (fl) { if (~rt && !rt) rt = u; else if (~rt) rt = -1; } }
void dfs2(int u, int fa) { sz[u] = 0, f[u][0] = 1; for (auto v : G[u]) { if (v == fa || del[v]) continue; dfs2(v, u); std::fill_n(g, n + 1, 0); for (int i = 0; i <= sz[u]; ++i) for (int j = 0; j <= sz[v]; ++j) inc(g[i + j], 1ll * f[u][i] * f[v][j] % kMod * C[i + j][i] % kMod); sz[u] += sz[v]; for (int i = 0; i <= sz[u]; ++i) f[u][i] = g[i]; } ++sz[u]; f[u][sz[u]] = f[u][sz[u] - 1]; }
void dickdreamer() { std::cin >> n >> m; for (int i = 1; i <= m; ++i) { int u, v; std::cin >> u >> v; G[u].emplace_back(v), G[v].emplace_back(u); } prework(); for (int i = 1; i <= n; ++i) check(i); ans[0] = 1; for (int i = 1; i <= n; ++i) { if (!exi[i]) { vec.clear(); rt = 0, dfs1(i, 0); if (!~rt) continue; if (rt) { dfs2(rt, 0); std::fill_n(g, n + 1, 0); for (int j = 0; j <= n; ++j) { for (int k = 0; k <= n - j; ++k) inc(g[j + k], 1ll * f[rt][j] * ans[k] % kMod * C[j + k][j] % kMod); } for (int j = 0; j <= n; ++j) ans[j] = g[j]; } else { std::fill_n(tmp, n + 1, 0); for (auto x : vec) { dfs2(x, 0); for (int j = 0; j <= n; ++j) inc(tmp[j], f[x][j]); } std::fill_n(g, n + 1, 0); for (int j = 0; j <= (int)vec.size(); ++j) { tmp[j] = 1ll * tmp[j] * (j == vec.size() ? 1 : qpow((int)vec.size() - j)) % kMod; for (int k = 0; k <= n - j; ++k) inc(g[j + k], 1ll * tmp[j] * ans[k] % kMod * C[j + k][j] % kMod); } for (int j = 0; j <= n; ++j) ans[j] = g[j]; } } } for (int i = 0; i <= n; ++i) std::cout << ans[i] << '\n'; }
int32_t main() { #ifdef ORZXKR freopen("in.txt", "r", stdin); freopen("out.txt", "w", stdout); #endif std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0); int T = 1; while (T--) dickdreamer(); return 0; }
|