[ABC259Ex] Yet Another Path Counting 题解

Description

NNNN 列的网格图,只能向下或向右走,合法路径的开端和结尾的格子上数字一样

找到合法路径条数,对 998244353998244353 取模

1N400,1ai,jN21\leq N\leq 400,1\leq a_{i,j}\leq N^2

Solution

有一个 O(n4)O(n^4) 的做法是每次枚举起点和终点然后用组合数计算答案,但是由于同一颜色的点可能很多所以这个做法过不了。

注意到出现次数 n\leq n 的颜色显然这样做是可以的,而出现次数 >n>n 的颜色最多 nn 个,所以对于这些出现次数很多的颜色在网格图上进行 dp 即可。

时间复杂度:O(n3)O(n^3)

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include <bits/stdc++.h>

#define int int64_t

const int kMaxN = 405, kMaxS = kMaxN * kMaxN, kMod = 998244353;

int n;
int col[kMaxN][kMaxN], fac[kMaxS], ifac[kMaxS], inv[kMaxS];
std::vector<std::pair<int, int>> vec[kMaxS];

int C(int m, int n) {
if (m < n || m < 0 || n < 0) return 0;
return 1ll * fac[m] * ifac[n] % kMod * ifac[m - n] % kMod;
}

void prework() {
fac[0] = ifac[0] = fac[1] = ifac[1] = inv[1] = 1;
for (int i = 2; i <= 2 * n; ++i) {
inv[i] = 1ll * (kMod - kMod / i) * inv[kMod % i] % kMod;
fac[i] = 1ll * i * fac[i - 1] % kMod;
ifac[i] = 1ll * inv[i] * ifac[i - 1] % kMod;
}
}

int solve1(int x) {
int ret = 0;
for (auto p1 : vec[x]) {
ret = (ret + 1) % kMod;
for (auto p2 : vec[x]) {
if (p1.first <= p2.first && p1.second <= p2.second && p1 != p2) {
ret = (ret + C(p2.first - p1.first + p2.second - p1.second, p2.first - p1.first)) % kMod;
}
}
}
return ret;
}

int solve2(int x) {
static int f[kMaxN][kMaxN] = {0};
int ret = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
f[i][j] = ((col[i][j] == x) + f[i - 1][j] + f[i][j - 1]) % kMod;
if (col[i][j] == x) ret = (ret + f[i][j]) % kMod;
}
}
return ret;
}

void dickdreamer() {
std::cin >> n;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
std::cin >> col[i][j];
vec[col[i][j]].emplace_back(i, j);
}
}
prework();
int ans = 0;
for (int i = 1; i <= n * n; ++i) {
if (vec[i].size() <= n) ans = (ans + solve1(i)) % kMod;
else ans = (ans + solve2(i)) % kMod;
}
std::cout << ans << '\n';
}

int32_t main() {
#ifdef ORZXKR
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0);
int T = 1;
// std::cin >> T;
while (T--) dickdreamer();
// std::cerr << 1.0 * clock() / CLOCKS_PER_SEC << "s\n";
return 0;
}

[ABC259Ex] Yet Another Path Counting 题解
https://sobaliuziao.github.io/2024/02/22/post/a9a76f86.html
作者
Egg_laying_master
发布于
2024年2月22日
许可协议