Description
有 N 行 N 列的网格图,只能向下或向右走,合法路径的开端和结尾的格子上数字一样
找到合法路径条数,对 998244353 取模
1≤N≤400,1≤ai,j≤N2。
Solution
有一个 O(n4) 的做法是每次枚举起点和终点然后用组合数计算答案,但是由于同一颜色的点可能很多所以这个做法过不了。
注意到出现次数 ≤n 的颜色显然这样做是可以的,而出现次数 >n 的颜色最多 n 个,所以对于这些出现次数很多的颜色在网格图上进行 dp 即可。
时间复杂度:O(n3)。
Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
| #include <bits/stdc++.h>
#define int int64_t
const int kMaxN = 405, kMaxS = kMaxN * kMaxN, kMod = 998244353;
int n; int col[kMaxN][kMaxN], fac[kMaxS], ifac[kMaxS], inv[kMaxS]; std::vector<std::pair<int, int>> vec[kMaxS];
int C(int m, int n) { if (m < n || m < 0 || n < 0) return 0; return 1ll * fac[m] * ifac[n] % kMod * ifac[m - n] % kMod; }
void prework() { fac[0] = ifac[0] = fac[1] = ifac[1] = inv[1] = 1; for (int i = 2; i <= 2 * n; ++i) { inv[i] = 1ll * (kMod - kMod / i) * inv[kMod % i] % kMod; fac[i] = 1ll * i * fac[i - 1] % kMod; ifac[i] = 1ll * inv[i] * ifac[i - 1] % kMod; } }
int solve1(int x) { int ret = 0; for (auto p1 : vec[x]) { ret = (ret + 1) % kMod; for (auto p2 : vec[x]) { if (p1.first <= p2.first && p1.second <= p2.second && p1 != p2) { ret = (ret + C(p2.first - p1.first + p2.second - p1.second, p2.first - p1.first)) % kMod; } } } return ret; }
int solve2(int x) { static int f[kMaxN][kMaxN] = {0}; int ret = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { f[i][j] = ((col[i][j] == x) + f[i - 1][j] + f[i][j - 1]) % kMod; if (col[i][j] == x) ret = (ret + f[i][j]) % kMod; } } return ret; }
void dickdreamer() { std::cin >> n; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { std::cin >> col[i][j]; vec[col[i][j]].emplace_back(i, j); } } prework(); int ans = 0; for (int i = 1; i <= n * n; ++i) { if (vec[i].size() <= n) ans = (ans + solve1(i)) % kMod; else ans = (ans + solve2(i)) % kMod; } std::cout << ans << '\n'; }
int32_t main() { #ifdef ORZXKR freopen("in.txt", "r", stdin); freopen("out.txt", "w", stdout); #endif std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0); int T = 1; while (T--) dickdreamer(); return 0; }
|